Relevance and Redundancy Analysis for Ensemble Classifiers
نویسندگان
چکیده
In machine learning systems, especially in medical applications, clinical datasets usually contain high dimensional feature spaces with relatively few samples that lead to poor classifier performance. To overcome this problem, feature selection and ensemble classification are applied in order to improve accuracy and stability. This research presents an analysis of the effect of removing irrelevant and redundant features with ensemble classifiers using five datasets and compared with floating search method. Eliminating redundant features provides better accuracy and computational time than removing irrelevant features of the ensemble.
منابع مشابه
A Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملAudio Genre Classification with Semi-Supervised Feature Ensemble Learning
Widespread availability and use of music have made automated audio genre classification an important field of research. Thanks to feature extraction systems, not only music data, but also features for them have become readily available. However, handlabeling of a large amount of music data is time consuming. In this study, we introduce a semi-supervised random feature ensemble method for audio ...
متن کامل